Giải câu 11 bài: Ôn tập chương I: Khối đa diện
Lời giải bài tập Toán 12 hình học giúp học sinh lớp 12 dễ dàng biết sách giải và làm bài tập về nhà môn Toán 12 chính xác nhất.
01 Đề bài:Bài 11: Trang 26 - sgk hình học 12
Cho hình hộp ABCD.A'B'C'D'. Gọi E và F theo thứ tự là trung điểm của các cạnh BB' và DD'/ Mặt phẳng (CEF) chia khối hộp trên làm hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó.
02 Bài giải:Mặt phẳng (CEF) chứa đường thẳng EF mà E là trung điểm của BB', F là trung điểm của CC' nên EF chứa giao điểm O của các đường chéo của hình hộp, do đo mặt phẳng (CEF) cùng chứa giao điểm O của các đường chéo và nó cũng chứa đường chéo A'C của hình hộp. Ta dễ dàng nhận thấy rằng thiết diện chính là hình bình hành CEA'F.
Qua EF ta dựng một mặt phẳng song song với đáy của hình hộp, mặt phẳng này cắt AA' tại P và cắt CC' tại Q.
Ta có thể tích của hình hộp ABCD. PEQF là $V_{ABCD.PEQF}=\frac{1}{2} V_{ABCD.A'B'C'D'}$ (1)
Mặt khác ta có $V_{CFQE}=V_{A'FPE}$ (2) (có chiều cao và diện tích đáy bằng nhau)
Xét khối đa diện ABCDEF do mặt phẳng (CEF) chia ra trên hình hộp ABCD.A'B'C'D'có
$V_{ABCD.FA'EQ}=V_{ABCD.FPE}+V_{A'FPE}$ (3)
Từ (1), (2), (3) suy ra $V_{ABCD.FA'EQ}=\frac{1}{2}V_{ABCD.A'B'C'D'}$.
Vậy mặt phẳng (CEF) chia hình hộp thành hai khối đa diện có thể tích bằng nhau và tỉ số của chúng là 1.
Cập nhật nhanh đáp án kèm lời giải dễ hiểu nhất được Trang tài liệu cập nhật qua bài viết sau đây bạn nhé!
Cảm ơn các bạn đã quan tâm và theo dõi bài viết của Trang tài liệu. Hi vọng, với những hướng dẫn của Trang tài liệu dưới đây có thể giúp các em học và đạt kết quả thật cao môn Toán 12.